Efficient Processing of k Nearest Neighbor Joins using MapReduce
نویسندگان
چکیده
k nearest neighbor join (kNN join), designed to find k nearest neighbors from a dataset S for every object in another dataset R, is a primitive operation widely adopted by many data mining applications. As a combination of the k nearest neighbor query and the join operation, kNN join is an expensive operation. Given the increasing volume of data, it is difficult to perform a kNN join on a centralized machine efficiently. In this paper, we investigate how to perform kNN join using MapReduce which is a well-accepted framework for data-intensive applications over clusters of computers. In brief, the mappers cluster objects into groups; the reducers perform the kNN join on each group of objects separately. We design an effective mapping mechanism that exploits pruning rules for distance filtering, and hence reduces both the shuffling and computational costs. To reduce the shuffling cost, we propose two approximate algorithms to minimize the number of replicas. Extensive experiments on our in-house cluster demonstrate that our proposed methods are efficient, robust and scalable.
منابع مشابه
Rapid AkNN Query Processing for Fast Classification of Multidimensional Data in the Cloud
A k-nearest neighbor (kNN) query determines the k nearest points, using distance metrics, from a specific location. An all k-nearest neighbor (AkNN) query constitutes a variation of a kNN query and retrieves the k nearest points for each point inside a database. Their main usage resonates in spatial databases and they consist the backbone of many location-based applications and not only (i.e. k...
متن کاملEfficient Multidimensional AkNN Query Processing in the Cloud
A k-nearest neighbor (kNN) query determines the k nearest points, using distance metrics, from a given location. An all k-nearest neighbor (AkNN) query constitutes a variation of a kNN query and retrieves the k nearest points for each point inside a database. Their main usage resonates in spatial databases and they consist the backbone of many location-based applications and not only. In this w...
متن کاملProcessing All k-Nearest Neighbor Queries in Hadoop
A k-nearest neighbor (kNN) query, which retrieves nearest k points from a database is one of the fundamental query types in spatial databases. An all k-nearest neighbor query (AkNN query), a variation of a kNN query, determines the k-nearest neighbors for each point in the dataset in a query process. In this paper, we propose a method for processing AkNN queries in Hadoop. We decompose the give...
متن کاملRankReduce - Processing K-Nearest Neighbor Queries on Top of MapReduce
We consider the problem of processing K-Nearest Neighbor (KNN) queries over large datasets where the index is jointly maintained by a set of machines in a computing cluster. The proposed RankReduce approach uses locality sensitive hashing (LSH) together with a MapReduce implementation, which by design is a perfect match as the hashing principle of LSH can be smoothly integrated in the mapping p...
متن کاملkdANN+: A Rapid AkNN Classifier for Big Data
A k-nearest neighbor (kNN) query determines the k nearest points, using distance metrics, from a given location. An all k-nearest neighbor (AkNN) query constitutes a variation of a kNN query and retrieves the k nearest points for each point inside a database. Their main usage resonates in spatial databases and they consist the backbone of many location-based applications and not only. In this w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PVLDB
دوره 5 شماره
صفحات -
تاریخ انتشار 2012